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The use of ordinary filtering techniques to suppress structural
feedback through control systems of large, flexible, space boosters
leads to a difficult stabilization problem. This report presents a dif-
ferent approach to the problem through the use of dual rate gyros and a
special bending filter. This dual rate-gyro concept is different from
conventional methods in the following way: By subtracting the outputs of
two rate gyros at different locations on the vehicle axis, the rigid body
mode is eliminated from the total rate gyro signal. This resultant signal
which still contains bending information passes into the special bending'
filter where it is divided into separate bending mode components. These
separate bending mode components are then weighted and fed into the
control loop to phase or gain stabilize the elastic vibrations.

The purpose of this report is to present this dual rate gyro stabiliza-
tion concept and to demonstrate its application using a simplified booster
model. Basic trends which provide insight into the operation of the system
are determined by a simplified analysis which assumes decoupled modes.
From this analysis, approximate stability bounds for gains and gyro
locations can be determined,

Two possible applications of the concepts are discussed. In the
first case a linear bending filter is analyzed with a representative elastic
booster. In the second case an adaptive bending filter is used with the
same vehicle model. In both cases stability was achieved for the nominal
vehicle configuration and for 100% increase in bending mode slopes. The
adaptive system was stable up to + 25% variation in first bending mode
frequency and * 40% variation in second bending mode frequency.
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DEFINITION OF SYMBOLS

SYMBOL DEFINITION
a pitch attitude gain factor
a, pitch rate gain factor
A(S) transfer function of actuator
bO angle of attack gain factor
B(S) transfer function of bending filter
Bl first band pass filter of bending filter
B2 second band pass filter of bending filter
C1 aerodynamic moment coefficient
CZ engine torque moment coefficient
F(S) transfer function of conventional filter
F(t) forcing function in a nonlinear bending equation
F(n) a function of 7
F-X g . .
- longitudinal acceleration of vehicle
g(n) nonlinear damping coefficient
j = /-1
KF gain factor of conveﬁtional filter
K1 gain factor of first band pass filter
.KZ gain factor of second band pass filter
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DEFINITION OF SYMBOLS
DEFINITION
magnitude of bending mode limit cycle
mass of vehicle

modal mass of a general bending mode

- -

- K
1 max 1 steady-state

1]

overshoot ratio of Kl Ml 7
1 steady-state

- K
2 max 2 steady-state

overshoot ratio of K., M_ =
2 2 K
2 steady-state
subscript denoting number of bending mode

slope of aerodynamic normal force with respect to
angle of attack

slope of thrust normal force with respect to engine
deflection

peak amplitudes of first and second bending modes,
respectively

magnitude of AI(S)

magnitude of B(S)

a stability bound of RB

minimum value of E-{B with respect to (DB
magnitude of F(S) A(S)

initial value of RB for the adaptive system

Laplace operator

time



SYMBOL

DEFINITION OF SYMBOLS

DEFINITION

velocity along trajectory
deflection of general bending mode at engine swivel point

deflection of general bending mode at angle-of-attack
vane location

slope of general bending mode at angle-of-attack vane
location

slope of general bending mode at position gyro location
slope of general bending mode at first rate gyro location

slope of general bending mode at second rate gyro
location

distance normal to undisturbed trajectory in pitch plane
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DEFINITION OF SYMBOLS (Cont'd)

DEFINITION
rigid body angle-of-attack
vane angle-of-attack reading
angle of attack due to wind
engine deflection angle
component of 3 due to bending dynamics
component of 8 due to rigid body dynamics
engine deflection command signal
damping ratio
damping ratio of conventional filter
damping ratio of bending mode
a general bending mode deflection
constants to be used in adaptive gain logics
real part of S
closed loop damping factor of a general bending mode
time constants used in adaptive gain logics
pitch attitude gyro output
rigid body pitch attitude error

first rate gyro output



DEFINITION OF SYMBOLS (Cont'd)

SYMBOL DEFINITION
c‘b?‘. second rate gyro output
pra bending adjustment from bending filter
% = 8 - 9,
c.PBl output of first band-pass filter in bending filter
q.)BZ output of second band-pass filter in bending filter
¢A phase of Al(s)
QB phase of B(s)
¢F phase of F(s) A(s)
W imaginary part of S
W' closed loop damped frequency of a general bending mode
wp natural frequency of bending mode
W break frequency of conventional filter
WiAr Wp break frequencies in first band-pass filter
Wypr Wop break frequencies in second band-pass filter

viii




SECTION I. INTRODUCTION

A problem associated with the control of lé.rge space boosters is
the stabilization of structural feedback. When elastic bending modes
are sensed with the state variables and reinforced through the control
system, instability results. Conventional approaches to the problem
have been through direct filtering of the state variables and judicious

el AN Al —— Mmoo
sensor placement to gain and phase stabilize the bending modes. These

techniques have been quite satisfactory for smaller ballistic missiles,
but for large vehicles such as the Saturn or Nova, the bending frequen-
cies are so low that direct filtering of the measured state variables
produces either phase lag and distortion of rigid body signals, or very
limited regions for acceptable sensor locations.

This report presents a different approach to the usual gain and
phase stabilization techniques. The basic difference in this solution
technique is that by subtraction of signals from two rate gyros, the
rigid body control mode is eliminated from the bending signal. This
pure bending signal which remains is then passed through a special
purpose filter where the separate modes are decoupled and multiplied
by appropriate gains and used in the control equation to prevent
reinforced elastic vibrations. Since the special bending filter operates
only on a pure bending signal, it does not affect the phase of rigid body,
or other, signals. Proper selection of bending filter gains reduces the
coupling between bending modes as well as the requirements to vary
sensor locations for acceptable stability regions. Selection of these
gains can be accomplished by a root locus analysis if the bending filter
is linear. Another possibility is an adaptive filter in which the gains
are self adjusting. Both possibilities are discussed in this report.

An analytical investigation of the concepts was performed using
simplified equations. These equations were in agreement with the
decoupling principle of the bending filter. From this simplified analysis,
relationships between rate-gyro locations, phase and gain requirements
of both bending filter and the conventional filter were obtained to deter-
mine stability bounds. These relationships were verified by application
of the concepts to a representative model booster. Both the linear and
adaptive cases were simulated. Stability was achieved for both cases
for the nominal vehicle configuration and for 100% increase in bending
mode slopes. The adaptive system maintained stability for as much as
*25% variations in first bending mode frequency and +40% variations in
second bending mode frequency.



II. PROBLEM STATEMENT

Large space boosters such as Saturn and Nova are designed to
accomplish varied space missions involving large payloads. These
vehicles are necessarily long and slender and possess low frequency
structural bending modes in the proximity of rigid body control fre-
quencies. State variables, when measured by conventional sensors,
are contaminated by the elastic modes which, if reinforced through
the control system, cause instability and possible destruction of the
vehicle. Conventional gain stabilization, which has been successfully
applied to stabilize structural feedback in smaller missiles, is
inadequate for the larger vehicles for the followi ng reasons: (1) low
frequency bending modes cannot be sufficiently attenuated by low pass
filters without severely lagging the control response, and (2) bending
mode antinodes change during flight time such that optimum positioning
of the gyros for gain stabilization is difficult.

It thus becomes evident that one or more low bending modes must
be phase stabilized. Gyro locations for conventional phase stabilization
are limited to those positions at which the bending mode slopes are
small in order to reduce coupling effects. Furthermore, the locations
must be readily accessible.” The conventional filter allows little
additional phase stability margin since it is constrained in the following
ways: it must not destabilize other bending modes or slosh modes, it
must not appreciably lag the rigid body signal, and finally, it should be
as simple and reliable as possible.

These problems are compounded by inaccurate knowledge of the
numerical values of both bending mode slopes and frequencies.

Because of the difficulties in conventional filtering and positioning,
a different approach to gain and phase stabilization is considered in this
report. This method utilizes two rate gyros at different locations along
the vehicle axis. Basically this procedure is to subtract outputs of two
rate gyros to obtain a pure '"bending'' signal; i.e., the rigid body control
mode is eliminated from the bending modes. This bending signal is then
operated on by a specially designed filter in a manner which will gain
stabilize or phase stabilize the elastic modes. This filter, called the
bending filter, may be simply a combination of linear band-pass filters,
each filter being designed to stabilize a particular bending mode. On
the other hand, a more elaborate adaptive bending filter might be
considered if needed.




Some preliminary design techniques for the special bending
filter are outlined in this report. If the filter is linear, it is amenable
to the usual root locus analysis. Design of an adaptive filter is, in
general, more difficult. A simple example of an adaptive filter is
presented, however, designed on the basis of a quasi-linear preliminary
analysis and an analog response study.

III. METHOD OF APPROACH

The fundamental reason for using two rate gyros is to provide a
means of decoupling the rigid body and elastic feedback signals. If a
single rate gyro is used, unless the location is at a bending antinode,
the rate feedback contains both rigid body and elastic components. If,
however, the outputs of two identical rate gyros at different locations
along the vehicle axis are subtracted, the resultant signal contains pure
bending information. This ""pure' bending signal may be adjusted or
filtered in various ways without any corresponding operation on a rigid
body signal. This pure (but not total) bending signal is thus decoupled
from the rigid body signal.

In Figure 1 a general block diagram of a dual rate gyro system is
presented. The control equation for this system is a conventional
linear combination of angle-of-attack, rate gyro, and position gyro
feedbacks with an additional adjusted bending signal ¢p,; . $pa is the
output of a special bending filter which operates on the pure bending
signal ¢; - 2.

The primary purpose of the bending filter is to decouple the
bending modes from one another. Gyro blending systems without the
bending filter cannot produce a stabilizing adjustment on one bending
mode without a corresponding adjustment, which is in many cases
destabilizing, on other bending modes. The bending filter serves to
separate the modes and thus minimizes the interaction between different
modes. Each mode can, to an extent, be stabilized independently of
the others.

For this reason a preliminary investigation of the system can be
considerably simplified by an analysis which treats each mode independ-
ently. This ''"quick look' analysis based on simplified decoupled
equations can provide insight as to gain and phase bending filter
characteristics required to stabilize a bending mode for particular gyro
locations. This analysis is presented in the following section.
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A. . Preliminary Design Concept -

The following simplified analysis assumes a single general bending
mode. In this treatment coupling influences between this bending mode
and the rigid body are not considered. Using this'decoupling'assumption
simplified formulas can be developed which approximate the closed loop
frequency and damping of the bending mode in a neighborhood of the open
loop bending pole. These formulas are quite useful in determining
approximate gain and phase requirements of the filters to stabilize the
bending mode. Other effects such as stability of filters or interaction
between filters and rigid body cannot be determined by this analysis.
These effects are seen in a root locus analysis presented in the ''results"
section of this report. (The decoupled mode analysis is useful, however,
in a region near the open loop bending pole and in this region is in
agreement with the complete root locus analysis.) For a more detailed
discussion on decoupled mode analysis the reader should consult
Reference 1.

1. Derivation

Using the notation of the Laplace Transform the following
equations can be written:

The control equation is

.9) = 3,2, (9 + 4z [sm2(9) - 50, 0)] + 3, @ 1)

where the sensor outputs are

Py (S) = @ (8) - Y n(S)

S@1(S) = SP(S) - Y1 Sn(s)

5P2(S) = SP(S) - Y& Sn(8)

Y
Q% (8) = a(8) - Y. n(S) - FSn(S)
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and the output of the bending filter is

59, ,(5) = B(S) [soucs) - Swz(S{] = - B(S) (Y1 - &) sn(s)

where B(S) is the transfer function of the bending filter.

The engine gimbol anglef is given by
B(S) = E(S) A(S)B_(S) (2)

where F(S) and A(S) denote the respective transfer functions of the
conventional filter and actuator.

The bending mode equation is
YBN
(s + 2§B wpS + w§) n(s) = —-—-‘QB(S). (3)

Equations (1) can be combined with equation (2) and 3(S) may
then be written as the sum of rigid and elastic components,

B(S) = B () + By(8) (%)
where

BR(S) = F(S) A(S) |a 9.(S) + a15p,(S) + boocR(s)]

and

p($) = = FS) AS) [4,0(9) + a3 sn(s)]

where Ao and Al(S) are introduced to shorten notation.




A =ay' +b Y (5)
o op o Vv

Y
A1(8) = a3 Efi - B(S) (Y! - Yé)] +D —%

According to the decoupling assumption SR (S) may be used with a
set of rigid body dynamic equations with Sg({S) considered as a non-
reinforcible disturbance. This constitutes the rigid body control
problem. Likewise the flexible body problem can be studied bycombining
equations (3) and (4) and treating Bg(S) as a forcing function. In general,
the two problems can be separated whenever the amplitudes of the

bending oscillations are small as is the case for low structural gains.

Considering only the flexible body problem, equations (3) and (4)
yield the following vibration equation:

YN
s + 26w, +—S;EF(S) A(S)| s + w + SBBAF(S) n(s) =
Y_N
- BB
T BR(S) (6)

Associated with equation (6) is the following characteristic
equation:

YN
s2 + |26,0, + BB rsy ars)| s+ w2+—f3—§AF(s) =0 %D

Mg B

or
) TP (S) + £,(5)]
s? + ngBmB +—S;§ Rp(S) Ry(S)e F A S +
§ YN iZ.(8)
+m§+-§—Bﬁ AR (S)e F'%l = o
|




where
17,(9)

F(S) = RF(S)e = RF(S) j sin QF(S) + cos ¢F(S)]

and (8)
i8,(8) |

Ai(8) = RA(S)e = RA(S) j sin Q’A(S) + cos Q’A(S):I

and the following relationships exist between Al(S) and B(S):

]

R,(S) sin §,(8) = - ai(¥Y] - Y&) Ry(S) sin @F,(S)

v (9)
\4

allzf'l - (Y} - b RB(S) cos @'B(S)] + bo v -

]

RA(S) cos ¢A(S)

It is known from the decoupling assumption that the characteristic
equation (7) is valid for determining a root in the vicinity of the open
loop bending pole, where structural feedback is small. If only the root
in this region is of interest, equation (7) may be replaced by a second
degree equation which contains approximately the same root. This
can be accomplished if the region of interest is sufficiently small that
the magnitude and phase contribution to equation (7) due to filters and
the actuator can be assumed invariant throughout this region. Further-
more o< <wpg in this region, and the substitution S = jwpy can be
made in the transfer functions of filters and actuator.

Using the above simplification and relations of the form (8)
equation (7) becomes:

Y. N
2 4+ {ZQBwB + —%ﬁ RF(ij) E:os (ﬁF(ij) + QA(ju)B)> sin (QF(ij) +

. YN
+ ﬁA(jw@ _ﬂz s+ du2 + %}f AR, (50) [008 B (juy) + sin QfF(ij)j:l} - o.
)

(10)




In order to avoid solving an equation with complex coefficients
further use is made of the assumption that in the transfer functions for
the actuator and filters, S= jug. Thus in the above equation j may be
replaced S/wg. The following quadratic equation results:

( YN sing (jw,)
T —;LBE R (juy) |R,(jug) cos (st(ij) + ¢A<ij)> Mamen B:ll
5 +< YN, Rp(Jwp)R, (Jwg) / N
1+ -2 2 sin (g GGy + £, (Gw)
i My Wy K F'° B ATB ) J
( YﬁN (11)
w? A Ro(ju) cos F(jug)
+< . -
N, RL(Jw )R, (Gug)
The roots of this equation are given by S = ¢' + jw' where
Y N / A s1n525 (jw )-l
. Cpw 2 MB £ g p(19p) | Ry (Juwp) cos ﬁ (Jug) + £, (jw )> o
ST (JwpIR, (Jwg)
1+ SB@ i o sin (gF(ij) + gA(iji>
(12)
and
YN !
w2 + —E-BE A, Ry(jwy) cos B (juy) .
w' = - o' . (13)

B ﬁ RF(Jw ) R, (jw, )
My “p

n <¢F<ij> + szA(ij))

S
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2. Stability Bounds

In order to stabilize the bending mode, the parameters
Ry, O, 95 and Ay must be chosen such that ¢ < 0. Since the decoupling
assumption requlres that the denominator of o' can never be zero the
general stability condition of a decoupled bending mode can be stated
as follows:

N(ﬁF, Rps B> R <0

where by definition

A

N = - Cw +§ﬂRFKR cos (,@ +Q)+-——31n¢ ) (14)

If the stability condition can be satisfied by a choice of parameters
such that

YN A ,
1L Bp Yo .
l > MB RF RA cos (QF + ¢A) + o sin QF I < CBwB

then the bending mode is said to be ''gain'' stable. If this condition is
not satisfied, and N < 0 anyway because of a proper choice of the phase
¢ and Q)F and the sensor positions (which determine the algebraic signs
of the slopes Y'l, 5, and Y%), the mode is ''phase'’ stable.

If a conventional stabilization system without the bending filter
and with only one rate gyro is used then RB = 0 and

=
1]

A alYi + bO

<I<'-<:

0° from (9).

D>\®\
il
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This conventional system can gain stabilize only by choosing either Ry
small or by finding sensor locations such that Y} and Y} are small.
Phase stabilization can be accomplished only be proper choice of ¢F
and the sensor locations. If the dual gyro stabilization system is used,
two additional parameters, Rp and #., may be used. Thus values of
R, and §5 where Ry = Rpo(Rp,@p) and @5 = §p(Rp, Pg) can be chosen
to stabilize the mode regardless of the values of Yy, Ry, and 1)
provided the two rate gyros are properly spaced such that Y'1=;4 Y'Z.

In order to establish stability bounds of the bending filter phase

A _~ee A Lt T B R Bl = T - TP - IR P UL B | ) (- P
WB alrly gd-].ll o 3 LL 1D auvauuagcuub LU W1l iIN 11l LC111id>

Rewriting N in the following form:

£
L

<

1 YN Ao
N = - 1 BB o . , o .
QBwB +3 MB RF@A cos fZA cos ;ZF R, sin QfA sin ﬂF + o sin QF>

and substituting from Equation 8: (15)

Y.N Y
] 128 C o e %
N = ngB + 3 MB RF cos ﬁF alél (Y1 - YD) RB cos ﬁB + bO 7

YN a
+%—%§ Ry sin g |ai(¥Y1 - Y2) Ry sin ¢B+;;- . (16)

©r in another form:

YN
N = - ngB+%—;LB-@RF al<y'l cos fp - (Y1 - Y8) Ry cos (¢F+¢B)> +

boYv Ao
+ 7 cos Q’F + (-u; sin ,@'F . (17

From this equation a lower bound of ]RBI can be determined such
that the stability condition N< 0 is satisfied. An upper stability bound
for Rp exists if the full equations including coupling effects are
considered. This upper bound cannot be determined by Equation (17).

The stability condition may be further simplified if the rate gyros
are not located near antinodes, that is, Y'1 or Y'Z are of the same (or
greater) order of magnitude as Y, Y,, Yi), and f{gwp. Under this
assumption the approximate stability condition is as follows:

YB E{i cos ﬁF - (Y] - YY) RB cos (Q!F + QJB):I > 0. (18)
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In this expression Y3 may be either positive or negative, depending on
the particular bending mode and on whether or not bending modes are
normalized at the nose or tail of the vehicle. If bending is normalized
1_'at the nose, YB> 0 for the first mode and YB < 0 for the second. If,
‘however, bending is normalized at the tail YB >0 for all bending modes.

The inequality (18) determines a stability region in which the
boundary is determined from the following equation:

ﬁB cos (ﬁB + QJF) = ?ilé—?-é- cos Q’F (19)

provided Y| # Y'2

Equation (19) is quite useful in providing a '"'quick look' analysis
of the type of bending filter needed for various bending modes. It is
evident from this equation that if ]Y'l ] > [Y'ZI , a necessary condition
for the stability bound Rp to be a minimum is the condition:

(20)

Of perhaps greater importance is the fact that this is the condition for
which the stability bound Ry is least sensitive to changes in §g. The
exact values of the phases @ and QB at the bending mode frequencies
cannot be known by the filter designer for several reasons. The
dynamics of the two rate gyros may not be exactly the same, and the
bending mode frequency may not be known with a high degree of accuracy.
Thus condition (20) is often a good design criterion since it provides the
greatest tolerance for variations in either Q)F or (DB. Equation (20) will
thus be denoted as the optimum phase condition.

A sketch of Equation (19) is presented in Figure 2-A. An arbitrary
#r is assumed for the sketch., It is further assumed that | Y'1|>| Y'ZI
without loss of generality since the effect of fY'l ,> 'Y'Zl can be seen by
replacing §5 by @5 % 180°. It is seen from (18) that for Y' < 0 the first
bending mode is stable for the region | RB|>| RBI . For Y| >0 the
stability region is IRB|<IRB| . For the second bending mode if bending
deflections are normalized at the nose of the vehicle Yp < 0 and the
stability regions are reversed. If bending deflections are normalized at
the tail, however, Y has the same sign for all bending modes and stability
regions are not reversed.
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Note: Bending deflections
are assumed normalized at
nose for these curves. It

1 1 ]
Figure 2-A is assumed that |Y1| >v|¥2|
Ry
A
lst Mode stable if Y]'_<O
g 2nd Mode stable if Y1'>0
/

-180°

boo ° "B
;
L
/. lst Mode unstable if Yi<()
st Mode stable if Yi <0 2nd Mode unstable if Yi)’O
2nd Mode stable if Yi >0 .
3 Figure 2-B .
lst Mode stable if Yi <0 Ry 2nd Mode stable if Yi >0
‘ * R
Note: Optimum phase condition pmin
(Pg = - @) is assumed for
this curve.
/
4 > #F
=909/ / DO 900 1800
Vs
l1st Mode ungtable if Yi <0
2nd Mode unfptable if Y! » 0

1

Figure 2: The General Stability Bound Curves
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Figure 2-B shows the minimum stability bound (optimum phase
condition) as a function of ¢ . Stable and unstable regions are
indicated. It is easily seen from this figure that for the optimum phase
condition and Yi <0 for first mode or Yi > 0 for second mode, a choice

YI
of RB such that RB> ?,——IY,—— provides stability for all values of @
1 2
However, if Y! > 0 for the first mode or Y! < O for the second, stable
and unstable regions of Figure 2-B are reversed and RB must be
YI

chosen such that RB< YTl"—Y_'Z in order to stabilize for all (DF. It can

P

further be shown that even if the optimum phase condition is not satisfied,
similar stability bounds independent of Q)F can be established provided

- 7 -90° < gB < - g+ 90° (21)

and

Yi - Y2 # 0.
The preceding argument shows an advantage of the bending filter. Since
an R_ and §_ can be picked to stabilize a bending mode regardless of R
and @_, there is freedom to design the conventional filter to stabilize
slosh or other hending modes.

3. Adaptive Stabilization

In order to reduce the amount of a priori knowledge of bending
mode data, the bending filter can be made adaptive. This can be done
if R_ is self-adjusting such that it automatically seeks values inside the
stabll?’e regions of Figures 2-A or 2-B. Thus R_ becomes a function of
stability. Let R_ = R_ (¢') have the following properties: R_ is a

bounded function%f staﬁ)ility. Initially R_ = R . If the bending equation
is stable, R_ remains constant at the inifial value R . If the bending

equation is unstable R_ increases until a stabilizing value is reached,
then levels off at that value.

In order to design a stabilizing system with an adaptive gain R
with the above properties, three problems are encountered. These

problems are as follows:

1). How can stability or instability of a bending mode be sensed?
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2). How can R, be selected such that increasing Rp always
passes through a stable region?

3). Can the nonlinear effect of a changing R destabilize ?

The first problem is not difficull for a dual gyro system since a
pure bending signal can be obtained by subtracting the outputs of the two
rate gyros. The rectified output of the bending signal provides stability
information. An increasing signal indicates instability; a decreasing or
constant signal indicates stability.

In problem two, the choice of R, depends on how much adaptivity is
needed, Assume, for the first case, it is desired to stabilize without a
careful analysis of gyro locations or filter phases. For this case choose
R, a negative number of sufficiently large magnitude that

YI

1
R. <

o - !-.)'{.—,l—_-'—?,—', It can be seen from Figure 2-A that if Q)B $ - ¢Fﬂ=90°,

2
an increasing RB will intersect the stability bound curve RB’ thus always
passing through a region of stability. If the region of stability is below
the Rp curve, RB (') should stop increasing and RB never intersects f{B.
Such an adaptive system should stabilize for any gyro positions, with the

single restriction that adequate separation exists between the values
Y'1 and Y'Z.
Assume, in the second case that § . is between - 90° and 90°, and

P # - (DF:I:9O°. Since (bF is known within these limits, it can b_e seen
from Figure 2-B that for R = 0, an increasing Rpg crosses the R curve
and will pass through a stability region. In this case, as well as in the
first case, the single restriction is that Y} and Y}, are not approximately
equal. Another possible restriction for both cases is that ¢ # §+90°,
For this condition the system may be either stable or unstable, depending
on the effects of the position gyro and the angle of attack meter.

The third problem includes the following considerations. If the
response of RB is too slow, the bending vibrations may build up to
dangerous proportions before a stable region is reached. If, on the
other hand, the response is too fast, Rg may overshoot the stability
region passing into a region in which the decoupled mode equations are
not realistic. Furthermore, the stability bounds of Figure 2-A and 2-B
were determined on the basis of linearity of Equation (6). If Rpg becomes
a function of stability, the linearity assumption is not strictly valid.
Finally, a stabilizing function Rg(s') is not unique, and certain type
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functions may be more desirable than others. For these reasons, a
method of quick analysis of the effects of various R_ functions should
be useful. This can be accomplished by analyzing l-?quatmn (6) with
the equation

R,(0') = F(A). (22)

This is a general adaptivity equation which indicates that R (") is
determined by measuring 1.

For simplicity assume 0°, R_ = 1 and the optimum phase
condition such that (DB =0°. 'I]i;e system to be investigated is:

YN YpN Ygls
H +{2€](§B+ —%;E a [YI'L - Rg(Y1 - Yéﬂ} o+ (W + —%BE AN = My Pr
(23)
R, = F().

Stability of Equation (23) can very easily be investigated using a
small analog computer such as the TR-10. The bending equation can be
wired on the computer and several type functions for F(4) can be
successively simulated on the computer. Using this method, simplicity

of implementation can be used as a criteria, as well as absolute stability.

In order to perform a mathematical investigation of (23) the
following general form should be used.

o+ g(MA + ' = F(t) » (24)

In this equation F(t) is a forcing function, g( 1j) a nonlinear damping,

and w' a constant. The general adaptive bending problem depends upon
the class of functions g(1 ) for which Equation (24) is stable.

For certain special functions g( 1), an analytic solution to
Equation (24) may be found. An approximate solution may be found by
setting g( ®) = Bh(A) h(n) where K << 1 , and taking a variational
equation about @(t), where @(t) is a solution of the linear equation:

i+ w'®n = F(t).
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For a treatment on this method, see Reference 2 or 3.

B. Application of the Concepts

1. Stabilization Philosophy

In order to apply the concepts previously discussed to a
particular booster some stabilization philosophy must be adopted. For
application to a representative C-I booster, the following stabilization
philosophy was used: A conventional low pass filter is used to gain
stabilize the third and higher bending modes. The bending filter, which
may be either linear or adaptive, is used only to stabilize the first and
second bending modes.

A block diagram of the bendingfilter is presented in Figure 3.
The bending filter consists of two band-pass filters, B. and B_, in
parallel and tuned to the first and second bending modes, respectively,
such that the sum of the weighted outputs of the two filters is ¢ .
A Bode plot and transfer function of one of the band pass filters is
presented in Figure 4. It should be pointed out that this band-pass filter
is not unique. For stabilizing the first bending mode, a low-pass filter
might be acceptable. Furthermore, an RLC band-pass filter might
perform better than the RC filter. The RC filter was used as a basis
for study because it is easily realizable, and the phase changes less
with respect to frequency.

One way to increase the adaptivity of the system is to use tracking
filters for B, and B_. Such an arrangement, however, may be
unnecessary, Computer studies presented in the next section indicate
that variations in w; and wscan be tolerated for filters of the form of
Figure 3. Simple time programming of filter parameters may be
sufficient. For a discussioa on tracking filters see Refererkte 4.

Another way of making the system adaptive has already been
discussed in the simplified analysis. K and K_ adjust automatically
to stabilize the first two bending modes.” Assume that for K. = 0 and
K, = 0, the sensors are located such that at least one bending mode is
unstable., If, for example, the second mode is unstable, K_ should
automatically increase from zero to some positive stabilizing value,
and level off at that value, stabilizing the bending mode.

The problem that remains is to implement the concept electronically.
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This involves determining some means of sensing stability when the

gain has increased to the proper level, then retarding the gain such

that it does not continue to increase beyond the stability region. Although
many possible schemes can accomplish this, the adaptive gain logic of
Figure 5 is perhaps the simplest mechanization. It consists of a full
wave rectifier, first order smoothing filter and a multiplier.

The function of the adaptive gain logic of Figure 5 is to produce
a gain K., (or K ) which is proportional to the magnitude of the first -
(or second) bending mode; thus an increase in bending causes a pro-
portionate gain increase which tends to stabilize. It is seen, however,
that a decrease in bending causes a decreasing gain which tends to
destabilize. The resultant effect is that K. or K, settles to a value
which produces a stable limit cycle in the l:l>ending signal. According
to Figure 2-A of the simplified analysis, this corresponds to R
located on the stability bound curve R_. According to a root locus
interpretation, this corresponds to a gain K‘2 such that the second mode
operating point is on the jw axis. ‘

Although a limit cycle is often und=sirable, it is found that by
adjusting the parameters, Kk and 1, of the adaptive gain logic, the
magnitude of the limit cycle can be made extremely small. A quick
way of determining the effects of Kand 7 on the limit cycle is to program
the logic of Figure 12 as Equation (22) of a simplified analysis with
Equation (23) on a small analog computer.

2. Basic Eg.aations
Bending stabilization techniques using the linear bending
filter and also the adaptive bending filter were investigated. The basic

equations which were used for the two studies are listed as follows:

1). Rigid Body

.o N -
Z= 62 o + (5D 9 + (NP

m

E@R+ClocR+Cgs=0

Q
1]

- 7/V
Py T O z/
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2). Elastic Bending

e . 2 .
nn+ ZQBHan T]1:1 + annn B M‘Bn B

3). Sensor Outputs

3 3 Y
Vn
= - v —_—
Oév OéR Z Yvn Z \ 1’]n
=1 n=1
3
- - 1
cPp CPR an T]n
n=1
3
- — 1
¢ = CPR Z Yln nn
n=1

3
[} = ) - ' 3
$z cPR Z Y2n nn
4), Filter and Actuator

f=TFGS) A(s) B

C

_ 1
AC) T M52 + M;S + 1

K
R = S : 2¢
+
G® TS
F F

5). Control and Bending Filter Equations

5C = a_ CPp + ai(d, - dbba) + bo &,

cbba = K1 ®p1 + Ko §B>

®B1 = B1(s) (1 = d2)

dg2 = B2(S) (P1 - §2)
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2
B,(S) = 4w1Aw1BS -
1 = = s
S + wlA) S wlB)
2
5a(S) 4w2AwZBs
2 = =4 =
(s + waA) S + w2B)
K1 = K3(t)y for the linear system Ky = Kl(c:DRD)), for the adaptive
; or o system
Ke = Ka(t) ) Kz = Koy )
where

N - K] .
Kl((PBl) 1 S + 1 ‘chl‘

and
. _ Ko .

These equations were used to determine a characteristic equation
for the linear system from which root locus data was obtained by solving
for roots of this equation by a large digital computer. The equations
were also programmed for time response studies on an analog computer
for both the linear and adaptive systems. For both systems [ and 3
saturation effects of + 7° and * 15°/sec,respectively,were included.

The results of these studies are presented in the following section.

IV, RESULTS

A, The Linear System

The preceding basic equations were used with obsolete Saturn
C-1 data. The coefficients were assumed fixed with values corresponding
to time of maximum dynamic pressure. The first and second rate gyros
were assumed located at stations 1400 and 600 respectively. These
locations were chosen in agreement with the condition, as seen from the
simplified analysis, that Y'l is not approximately equal to Y'z for either
first or second bending modes. The position gyro location was assumed
at the G&C compartment at station 1500. As seen from the basic equations,
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a second order RC network was assumed as a conventional filter for
the feedback signal 3 . The break point chosen was w_, = 15,
sulficiently low to (éain stabilize the third bending mode, but not the
first and second modes. Nominal values for break points in the bending
filters are as follows:

=9 W 16

w
1A 1B

ng = 25 sz = 40

The effect of the dual gyro system with bending filter can be seen
from a comparison of Figures 6 and 7. Figure 6 is a root locus
diagram of a conventional system with a single rate gyro located at
station 1400 whereas Figure 7 is a root locus diagram of the dual
gyro system with the other rate gyro at station 600. The filter gain
K_ is the parameter with which the roots vary, all other parameters
béing fixed. The nominal operating point K_ = 1 corresponds to those
points at which the traces are slashed by short line segments. It can
be seen from Figure 6 that the operating point for the conventional
system is unstable for the second bending mode and marginally phase
stable for the first bending mode. In Figure 7 this situation is corrected
by selecting bending filter gains of K. = .5 and K_ = 1 to be used with

. 1 . .
the dual gyro system. In this system the second mode is gain stable and
the first mode is phase stable with much larger phase and gain margins.
The most critical points in the system are now the third bending mode
and filter operating points, both of which have gain margins of 1. 8.

The parameters used in Figure 7 are considered nominal, but
other values may be used as well. A list of the effects of variations in
these parameters upon the operating points of the most critical modes
of the system is presented in the following table. In this table two
extremes are assumed for each selective parameter of the system and
the corresponding frequency and damping of critical modes tabulated.
In determining the effect of each off-nominal parameter, the other
parameters were fixed at nominal values.
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Note: Rate Gyro at Sta 1400
Y

bﬁwwﬁ& Bending Mode
50

ctuator

-40

o Second Bending Mode
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Figure 6: ROOT LOCUS OF CONTROL SYSTEM WITH SINGLE RATE GYRO AS A FUNCTION OF CONTROL
GAIN Kp.
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Note: Rate Gyros at Sta 1400 and 600
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Figure 7: ROOT LOCUS OF CONTROL SYSTEM WITH DUAL RATE GYROS AND BENDING FILTER AS A
FUNCTION OF CONTROL GAIN Kyg.
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It is significant from this table that the parameters in the bending
filter cause no appreciable change upon the rigid body operating point,
which is approximately the same value as for the conventional single
gyro system. It is further seen that for the nominal vehicle, K can
range between 0 and 1.5, KZ between .65 and 1. 75 and the system
remains stable. Wide variations in w4, W,ps Wops and w_p
can also be tolerated. If the conventional filter break point is reduced
to 12 the phase lag effect on the rigid body can be seen from the
increase in the rigid body operating frequency. Raising wp above 15,
however, has the effect of decreasing the third mode gain margin.
Break points in the bending filter also affect the third mode, but
apparently can be lowered below 6 before coupling effects begin to
reduce rigid body performance.

Using the nominal values of the selective gains, as determined
from the preceding root locus analysis, an analog response study was
conducted. The response of a nominal vehicle model with three bending
modes is shown in Figure 8. The disturbance o which is plotted in

. . w .
Figure 8 is assumed the same for all other analog plots in the study.
All three bending modes of the nominal dual rate gyro system of Figure
8 are stable for this disturbance.

In order to provide for inaccuracies in estimates of bending mode
slopes and frequencies, analog runs were made for off-nominal values
of these parameters using the same selective gains as in Figure 8. For
the condition shown in Figure 9A, the first and second bending mode
slopes were increased by a factor of 2 at both rate gyro locations.
Stability was achieved for this condition. If the third mode slope is
also doubled, that mode is no longer gain stable since the bending filter
was designed to stabilize only the first two modes. If the conventional
filter break point is lowered to provide more attenuation at higher
frequencies, all three modes are stable. Such a condition is presented
in Figure 9B with w,= 12. '

Figure 10 depicts the response for off-nominal values of first
and second bending mode frequencies. In Figure 10A the first and
second modes are decreased by 10% and 15% respectively. In Figure 10B
these frequencies are increased by the same percentages. Further
analog runs demonstrated that the frequencies may be increased much
further than the indicated 10% and 15%, but the negative 15% deviation
in second bending mode establishes a stability bound for decreasing wp;.

If a greater tolerance than £15% Wg, is required, it may be possible to
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find other values of the selective gains than nominal, or other gyro
locations than were chosen for this study. Still another possibility
consists of making the bending filter adaptive.

B. The Adaptive System

It has been previously stated that a bending mode might be stabi-
lized adaptively by increasing a bending filter gain until stability of the
mode is sensed. The ''increasing gain'' stabilizing effect can be seen
from root locus plots. Figure 11 presents a locus of ''zeros' (points
for which K_ = ») as K_ increases and K, = 0. It can be seen from
this figure t]iat a zero -established by the second mode band-pass {filter
passes through a proximity of the second bending mode pole as the gain
K, is increased. For the region of K, in which the filter zero is very
near the bending mode pole, the mode is gain stable. This is illustrated
in Figure 12. It is seen from this sketchthat for the zero near the
bending pole, the locus from the filter poles does not flow into the zero,
but is replaced by the bending mode locus which flows into the zero. It
is seen from the sketch that for some values of K_, the entire second
mode locus is in the left half plane, and that the operating point is
sufficiently near the bending pole to be gain stable.

In order for K, and K_ to increase to stabilizing values the adaptive
gain logic of Figure 5 is used. Analog response studies using the basic
equations for the adaptive system were conducted. For these studies
both K. and K, were given the initial value zero and then they automati-
cally adjusted to positive stabilizing values. These response studies
are thought to be conservative since sudden large adjustments in K. or
K_ are not so likely during an actual booster flight as continual small
ac%justments in these parameters over long time intervals,

For the initial condition K10=K20:O and for the same wind input as
in the previous linear study, responses were obtained for a range of
of values of k/tand 7. Thisstudy was performed to determine the
effects of k/t and 1 on three critical parameters: the bending limit
cvcle magnitude L, maximum peak-to-peak bending amplitude P_ , and
the overshoot ratio M of the adaptive gain, for both first and secord
bending modes. Data obtained from these response studies was used to
plot the curves in Figures 13 through 17.

Examination of the curves in Figures 13 through 17 reveals the
following characteristics: For the second mode tmall values of ¢ and
k/T cause large limit cycle magnitudes and peak bending oscillations,
As T and k/1 increase, both P_and Lnapproach small constant values,

It is observed that no limit cycle exists for the first bending mode, the

reason being that the first mode is slightly phase stable for Kl =0. It
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is seen that M increases with both k/tand 1t for both modes. It is
important that M not be excessively large. A large value of M. or M
can mean that the peak value of K. or K_ is near the upper stability
bound. For this reasonK/T and T shouldzbe small. If the requirements,
M <1,0 and L < .1, are acceptable, a wide range of K/ and 1 can be
found. The values used for the following study are T = 8and T =5

for both bending modes.

Figure 18 presents a response of the adaptive stabilization system.
It can be seen that as the second mode bending oscillations increase in
magnitude, K_ increases, stabilizing the bending and reaching a peak
value just less than 1. Then as K_ approaches a steady state value of
.65, the bending settles to a smalf limit cycle. As seen from the

figure, the effects of the bending oscillations on apo P and B is
almostimperceptible For this case 1\/[1 66 1\/[2 s Pl =,13,
P_=.12, L =0, and L_ = .04, 1

n2 nl nZ

Off nominal conditions are presented in Figures 19 through 22,
Figure 19 shows the response when first and second mode slopes are
doubled. For this case K. peaks above 1, but stability is maintained.
In Figure 20y _ is lowered to 12 to stabilize the off-nominal third
mode. All three mode slopes are doubled for this case.” Figures 21
and 22 show the wide range ofw 1ande2which can be tolerated using
the adaptive system. Stability can be maintained for #25% variations
. + L . )
iy and 40% variations nwgs
V. CONCLUSION

The purpose of this study was to investigate a dual gyro system
with bending filter and to perform a preliminary feasibility analysis
of this concept on a representative elastic booster. Simplified
equations were used to establish stability bounds and basic trends.
These trends were verified by root locus and response studies using
the basic equations and approximate Saturn C-I data. Stability was
achieved for the representative configuration and using certain off-

nominal elastic body parameters for rate gyro locations at stations
1400 and 600.

It should be pointed out that no attempt was made either to optimize
gyro locations or Yending filter parameters in this study but rather to
illustrate the concepts. Better results may be obtained bya modification
of the techniques. The method of adaptation, for example, might be
improved by choice of an entirely different adaptive gain logic.

Furthermore, it is not known whether or not larger vehicles such
as Saturn C-5 or Nova can be stabilized with the same philosophy as
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presented here. If difficulty is encountered, it may be possible to
redesign the bending filter using a low-pass filter instead of a band-
pass filter for first mode stabilization. A more practical philosophy
might be to use two band-pass filters to stabilize the second and third
bending modes and phase stabilize the first by judicious sensor
locations. Other combinations are possible; the best approach depends
on the particular problems encountered by specific low bending
frequency elastic boosters.

In summary, the results of this study indicate the following
possible advantages for using dual rate gyros and bending filter:

1). Coupling effects between elastic and rigid body modes as
well as between separate elastic modes can be reduced by adjustment
of bending filter gains. Since the modes can be treated independently
of one another, insight can be obtained by a simplified analysis.

2). Since the gains of the bending filter can be chosen to
stabilize the low bending modes, more freedom is allowed to design
the conventional filter from the standpoint of slosh considerations
and other bending modes. A simpler conventional filter can be
designed.

3). Since the bending filter operates on a pure bending signal,
it does not produce phase lag of the rigid body response.
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MAXIMUM BENDING AMPLITUDE WITH SENSITIVITY RATIO,
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